Maximisation of the achievable bond width in capacitordischarge welding of annular axial seams on gear components Julius Lindenmaier^{1,2}, Tim Hertzschuch², Uwe Füssel²

Introduction

- Welding tasks in gear manufacturing include diameters up to 250 mm and cross sections up to 1500 mm^2 .
- Capacitor-discharge-welding is a highly dynamic process in which the entire weld seam cross section is produced simultaneously in less than 40 ms by a high-current pulse of several hundred kiloamperes.
- Annular seams can be produced by at least one of the joining partners having an annular projection contour for the current density concentration needed.
- The simultaneously welding of the cross section and short welding times favor a low thermal distortion.
- The fast welding process runs event-driven, an intervention is not possible. This means that the welding result is already determined by the predefined input parameters at the start of the process.

Basics of Capacitor-Discharge-Welding (CD-welding)

- Resistance pressure welding process, Joule resistance heating of the joint.
- Main field of application is projection welding.
- Energy supply through a capacitor-discharge.

CD-welding of annular axial seams

- An oversize x on at least one part is used as projection geometry.
- The contact geometry before welding can be described with the oversize x, the contact angle φ and the resulting contact width a.
- Under pressure and heating, the parts sink into each other by the melt distance *s*, that is directly related to the achieved bond width.

Extremely short welding times ($\sim 1 - 40$ ms)

Joule heating:

 $\dot{q} = \frac{Q}{\Lambda} = j^2 \cdot R$

heat flux density *q*... current density

R... ohmic resistance *Q*... heat flux

 A_{I} ... conductive cross section

Problem statement und objective of the investigation

Data points \Diamond no spattering filling: \blacklozenge slight spattering

strong spattering

- For a high possible load-bearing capacity, large bond widths are required between the joining partners in car transmission constructions.
- In CD-welding, only a certain amount of energy can be supplied into the process and a certain bond width can be achieved before weld spatters occur, which is not permissible.
- The aim of the study is therefore to investigate the influence of various input parameters on the achievable bond width before macroscopic weld spatters occur.

Influence of the oversize x

- Achievable bond width for different oversizes x is studied.
- First, the actual average size of each oversize $x_1 x_3$ (shaft) and the actual diameter of the hub D_{hub} (10 samples from each geometry) was measured:
- $x_1 = 0.351 \text{ mm}, x_2 = 0.448 \text{ mm}, x_3 = 0.546 \text{ mm}, D_{hub} = 53.987 \text{ mm}.$
- Welding conditions: electrode force F = 60 kN, current rise time $t_p = 11.3$ ms, repositioning stiffness k= 8.5 kN/ mm.

0.60			3
0.00	000000000	△ shaft x1= 0.35	
0.50		mm	
F	0000000000	Ochoft v2= 0.4E	E 2.5

Influence of the current rise time t_p

- For higher charging energys E the peak current I_p rises, but weld times stay constant.
- Achievable bond width for four different current rise times t_p is studied. lacksquare
- Configurations: $t_{p1} = 5.3 \text{ ms}$ (C= 8 mF, $\ddot{u} = 1:120$), $t_{p2} = 8.8 \text{ ms}$ (C= 24 mF, $\ddot{u} = 1:120$), lacksquare t_{p3} = 11.3 ms (C= 24 mF, \ddot{u} = 1:160), t_{p4} = 15.6 ms (C= 24 mF, \ddot{u} = 1:240).
- Welding conditions: electrode force F = 60 kN, oversize x = 0.45 mm, repositioning \bullet stiffness k = 8.5 kN/ mm.

- Achievable bond width for three different electrode forces *F* is studied.
- First, the resulting contact situation (width *a* and pressure *p*) before welding was measured for the different forces $F_1 - F_3$: $F_1 = 40 \text{ kN} \rightarrow a_1 = 0.33 \text{ mm}, p_1 \approx 708 \text{ MPa},$ $F_2 = 60 \text{ kN} \Rightarrow a_2 = 0.44 \text{ mm}, p_2 \approx 753 \text{ MPa}, F_3 = 80 \text{ kN} \Rightarrow a_3 = 0.51 \text{ mm}, p_3 \approx 758 \text{ MPa}.$ Welding conditions: current rise time $t_p = 11.3$ ms, oversize x = 0.45 mm, repositioning stiffness k = 8.5 kN/ mm.

Influence of the spring stiffness *k* (repositioning unit)

- Achievable bond width for four different spring stiffnesses k is studied.
- Two spiral spring packages (linear) and two elastomer spring packages (progressive).
- Spiral spring package 1: k = 8.5 kN/ mm, Spiral spring package 2: k = 18.7 kN/ mm.
- elastomer spring package 1: $k \approx 3$ kN/mm, elastomer spring package 2: $k \approx 10$ kN/mm
- Welding conditions: current rise time $t_p = 11.3$ ms, oversize x = 0.45 mm, electrode force F = 60 kN.

Summary

- All four investigated parameters (oversize x, current rise time t_p , electrode force F and spring stiffness k) have a decisive influence on the achievable bond width.
- In particular, short current rise times t_p and low electrode forces F lead to a premature weld splatter formation and therefore severly restrict the archievable bond width! For the studied diameter of 54 mm to be welded, melt distances s (and therefore bond widths) of up to 3 mm could be achieved without weld spatter formation occuring.
- Referent contact details: Julius_Enno.Lindenmaier@daimler.com
- ¹ Mercedes-Benz AG
- ² TU Dresden

AJP Conference 2021, Poster 26

